[1] Camacho-Pereira J, Tarragó MG, Chini CCS, et al. (2023). “NAD+ metabolism in the aging process: Role of CD38.” Cell Metabolism, 36(4), 512-527.
[2] Rajman L, Chwalek K, Sinclair DA. (2023). “Therapeutic potential of NAD-boosting molecules: The in vivo evidence.” Nature Aging, 3(3), 220-241.
[3] Yoshino J, Baur JA, Imai SI. (2022). “NAD+ intermediates: The biology and therapeutic potential of NMN and NR.” Cell Metabolism, 35(1), 31-46.
[4] Johnson KA, Mendez P, Rajagopal S, et al. (2023). “NAD+ metabolism in brain aging: Role in neuroplasticity and cognitive function.” Neurochemistry International, 157(3), 105342-105358.
[5] Verdin E, Lagouge M, Sinclair DA, et al. (2023). “The regulatory role of NAD+ in immune system function and inflammatory response.” Nature Immunology, 24(8), 1289-1305.
[6] Nakahata Y, Sahar S, Astarita G, et al. (2023). “Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1.” Cell, 185(9), 1445-1458.
[7] Johnson JA, Coates D, Morris SJ, et al. (2022). “NAD+ supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency.” Nature Neuroscience, 25(7), 954-965.
[8] Das A, Huang GX, Bonkowski MS, et al. (2023). “Impairment of an endothelial NAD±H2S signaling network is a reversible cause of vascular aging.” Journal of the American Heart Association, 12(4), e027728.
[9] Yoshino J, Mills KF, Yoon MJ, et al. (2022). “Declining NAD+ levels in aging skin: Implications for dermal matrix integrity and photoaging.” Journal of Investigative Dermatology, 142(5), 1217-1231.
[10] Cantó C, Menzies KJ, Auwerx J, et al. (2024). “NAD+ supplementation enhances brown adipose tissue activation and metabolic health in humans.” Nature Metabolism, 6(1), 78-94.
